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Abstract—We prove capacity results for a communication
system with Finite State Channels (FSCs), where the encoder
and the decoder can control the availability or the quality
of the noise-free feedback. The instantaneous feedback is a
function of a cost constrained action taken by the encoder, a
cost constrained action taken by the decoder, and the channel
output. Achievability is through construction of a sequence of
convergent achievable rates, using a simple scheme based on
‘code tree’ generation, that generates channel input symbols along
with encoder and decoder actions. For a given block length
N and probability of error, εN , we give an upper bound on
the maximum achievable rate. For stationary indecomposable
channels without intersymbol interference (ISI), the capacity is
given as the limit of normalized directed information between the
input and output sequence, maximized over an appropriate set
of causally conditioned distributions. As important special cases,
we characterize (a) the framework of ‘to feed or not to feed back’
where either the encoder or the decoder takes binary actions to
determine whether current channel output will be fed back to the
encoder, with a constraint on the fraction of channel outputs that
are fed back, (b) the capacity of ‘coding on the backward link’
in FSCs, i.e. when the decoder sends limited-rate instantaneous
coded noise-free feedback on the backward link.

I. INTRODUCTION

In his book [1], Gallager introduced finite state channels
(FSCs) as an apt model for a very broad family of channels
with memory. When no feedback is present and the channel
is stationary and indecomposable (defined in later sections)
without intersymbol interference (ISI), the capacity was shown
by Gallager in [1] and by Blackwell, Breiman and Thomasian
in [2] to be

CNF = lim
N→∞

1

N
max
P (xN )

I(XN ;Y N ). (1)

For the case of no ISI, stationary and indecomposable finite
state channels with time invariant deterministic feedback, the
capacity was shown in [3] to be,

CFB = lim
N→∞

1

N
max

Q(xN‖zN−1)
I(XN → Y N ), (2)

where Q(xN ‖ zN−1) is causal conditioning introduced by
Kramer in [4], defined as,

Q(xN ‖ zN−1)
4
=

N∏
i=1

Q(xi|xi−1, zi−1). (3)

and I(XN → Y N ) is the directed information introduced by
Massey in [6], where he credits it to Marko [7] which also

appears in the work of Tatikonda, [8]. Here Zi is a time-
invariant deterministic function of the output Yi. When the
channels have memory, feedback can increase the capacity
even for single user channels, such as the recent result on
capacity of trapdoor channel with feedback in [5]. In [10], the
notion of actions in source coding context was introduced,
where now the decoder can take actions based on the index
obtained from the encoder to affect the formation or avail-
ability of side information. In [11], the channel coding dual
is studied where the transmitter takes actions that affect the
formation of channel states. Recently, in [12], the channel
coding setting in [11] was generalized, to accommodate the
case where both the encoder and the decoder take channel
probing actions, with associated costs, to maximize the rate of
reliable communication. This was referred to as the ‘Probing
Capacity’.

In this paper, we introduce the notion of actions in acqui-
sition of noise-free feedback or its deterministic function for
FSCs. The main contribution of this paper is in characterizing
the cost-capacity trade-off when the feedback observed by
the encoder is a deterministic function of an action taken by
the encoder, an action taken by the decoder, and the channel
output, when actions are required to satisfy an average cost
constraint. More precisely, the encoder observes ‘sampled’
feedback Zi = f(Ae,i, Ad,i, Yi), where f(·) is a deterministic
function, Yi is the channel output, Ae,i = Ae,i(M,Zi−1)
is the action taken by the encoder as a function of the
message and the past sampled feedback, and Ad,i is the action
taken by the decoder, where we study two scenarios: one
where that action is strictly causal in the channel output, i.e.,
Ad,i = Ad,i(Y

i−1), and one where it can depend also on the
present channel output, i.e., Ad,i = Ad,i(Y

i). The problem
is motivated by practical applications where acquisition of
the feedback may be costly, and either or both the encoder
and decoder influence whether and what from the channel
output is to be fed back. We motivate and compute certain
special cases as that of to feed or not to feed back, i.e., where
actions are binary corresponding to observing the channel
output or not observing it, the cost constraint corresponding to
the fraction of channel output observations allowed, and the
channel states evolve as a markov chain independent of the
channel input process. Another special case is of the coding
on the backward link, where the decoder sends a symbol from
the action alphabet based on the channel outputs observed so



far, thus operating at an instantaneous rate which is log the
cardinality of said alphabet.

The rest of paper is organized as follows. Section II de-
scribes the channel model and formulates the problem studied
in this paper. The main results of this paper are outlined
in Section III. Section IV is dedicated to capacity-achieving
coding schemes along with the characterization of the capacity
for stationary, indecomposable, finite state channels without
intersymbol interference (ISI). Section V presents single letter
lower bounds for a specific example of to feed or not to feed
back (i.e. when actions are binary) for Markovian channels
when only one of the two, encoder or decoder, takes the
actions. Section VI computes for an example of a Markovian
channel the case of coding on the backward link for FSCs.
The paper is summarized and concluded in Section VII.

II. CHANNEL MODEL AND PROBLEM FORMULATION

Let upper case, lower case, and calligraphic letters denote,
respectively, random variables, specific or deterministic values
they may assume, and their alphabets. For two jointly dis-
tributed random variables, X and Y , let PX , PXY and PX|Y
respectively denote the marginal of X , joint distribution of
(X,Y ) and conditional distribution of X given Y . Xn

m is a
shorthand for n−m+ 1 tuple {Xm, Xm+1, · · · , Xn−1, Xn}.
Xn will also denote Xn

1 . When i ≤ 0, Xi denotes null
string as it is also for Xj

i , when i ≥ j. Xn\i denotes
{X1, · · · , Xi−1, Xi+1, · · · , Xn}. The cardinality of an alpha-
bet X is denoted by |X |. We impose the assumption of
finiteness of cardinality on all alphabets, unless otherwise
indicated.
We use the Causal Conditioning notation (· ‖ ·) as in Eq. (3)
and the following notation as introduced in [3] :

P (yN ‖ xN−1)
4
=

N∏
i=1

P (yi|xi−1, yi−1). (4)

The directed information conditioned on a random object S,
I(XN → Y N |S), is defined as,

I(XN → Y N |S)
4
=

N∑
i=1

I(Xi;Yi|Y i−1, S). (5)

We model discrete time channels with memory as Finite State
Channels (FSCs) where channel input symbols take values in
the finite alphabet X and output denoted by Y takes values in
finite alphabet Y . The state takes values in a finite alphabet
S. The stationary channel is characterized by the conditional
probability law P (yi, si|xi, si−1) satisfying,

P (yi, si|xi, si−1, yi−1, aie, aid,m) = P (yi, si|xi, si−1), (6)

where ae,i ∈ Ae and ad,i ∈ Ad are the encoder and decoder
actions respectively as will be explained later. Messages M ∈
M are assumed to be independent of initial state, s0. The FSC
is without intersymbol interference (ISI) if

P (si|si−1, xi) = P (si|si−1). (7)

The basic framework in this paper is the setting depicted in
Fig. 1. The communication system has the following building
blocks :

• Encoder Feedback Logic : Generates encoder actions,
{Ae,i}Ni=1, using the function fAe,i

: M×Zi−1 → Ae

i.e., Ae,i = fAe,i
(M,Zi−1), where Zi ∈ Z is the

sampled feedback component.
• Decoder Feedback Logic : Generates decoder actions,
{Ad,i}Ni=1, using the function fAd,i

: Yi−1 → Ad i.e.,
Ad,i = fAd,i

(Y i−1). where Yi ∈ Y is the channel output.
• Feedback Sampler : Generates sampled feedback, Zi =
f(Ae,i, Ad,i, Yi), where f is a deterministic function.

• Channel Encoder : Constructs channel input symbol,
Xi(M,Zi−1), using the encoding function, fe,i : M×
Zi−1 → X .

• Channel Decoder : Generates the best estimate of the
message given the channel output, M̂(Y N ), using the
decoding function, fd : YN →M.

We are interested in characterizing the maximal rate of reliable
communication under the average cost constraint,

E
[
Λ(AN

e , A
N
d )
]

= E

[
1

N

N∑
i=1

Λ(Ae,i, Ad,i)

]
≤ Γ, (8)

where Λ(·, ·) is a given cost function satisfying
maxae∈Ae,ad∈Ad

Λ(ae, ad) = Λmax <∞.
Definition 1: A rate R is said to be achievable if there

exists a sequence of block codes (N, d2NRe) satisfying (8)
such that the maximal probability of error,

max
m∈{1,··· ,d2NRe}

Pr(m̂ 6= m|message m was sent),

vanishes as N →∞. The capacity of such a system is denoted
by C which is the supremum of all achievable rates.
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Fig. 1. Modeling Feedback Sampling for the acquisition of feedback in
Finite State Channels (FSCs).

III. MAIN RESULTS

Let s0 denote the initial state. We define CN (Γ) and CN (Γ)
as,

CN (Γ)
4
=

1

N
max min

s0
I(XN → Y N |s0) (9)

CN (Γ)
4
=

1

N
max max

s0
I(XN → Y N |s0). (10)



Here max denotes maximization over the joint probability
distribution,

P (s0, x
N , aNe , a

N
d , y

N , zN ) = P (s0)Q(xN , aNe ‖ zN−1)

×Q(aNd ‖ yN−1)P (yN ‖ xN , s0)

N∏
i=1

1{zi=f(ae,i,ad,i,yi)},

such that E[Λ(AN
e , A

N
d )] ≤ Γ, where zi will stand for

f(ae,i, ad,i, yi). Note that effectively maximization in defini-
tion of CN (Γ) and CN (Γ) is over Q(xN , aNe ‖ zN−1)Q(aNd ‖
yN−1) as P (s0) is fixed and P (yN ‖ xN , s0) (and likewise
P (yN ‖ xN )) is a characteristic of the channel given by
(Lemma 6 of [3]). Our main results are as follows,
• Achievable Rate : For a communication abstraction as

in Fig. 1, any rate R is achievable such that,

R < lim
N→∞

CN (Γ) = sup
N

[
CN (Γ)− log |S|

N

]
. (11)

• Converse : Consider a coding scheme with rate R
which achieves reliable communication over the FSC
with feedback sampling as in Fig. 1. This implies the
existence of (N, d2NRe) codes such that the probability
of error PN

e goes to zero as N →∞. For such a scheme
given εN > 0, ∃ block length N0 such that for all block
lengths N > N0 we have

R ≤ CN (Γ) + εN . (12)

Note that unlike in [3], limit of CN (Γ) may not exist
because sub-additivity (like the one in Theorem 16 in [3])
breaks due to the presence of cost constraints. Hence for
a general FSC, we have the above converse result for a
give blocklength N and probability of error, εN .

• Capacity : In the following cases we characterize the
capacity exactly,

1) For an FSC where the probability of the initial state
is positive for all s0 ∈ S , the capacity is evaluated
exactly,

C(Γ) = lim
N→∞

CN (Γ). (13)

2) For stationary ‘indecomposable’ channels without
ISI with feedback sampling as in Fig. 1, the capacity
is,

C(Γ) = lim
N→∞

1

N
max I(XN → Y N ), (14)

where max denotes maximization over the joint
probability distribution,

P (xN , aNe , a
N
d , y

N ) = Q(xN , aNe ‖ zN−1)

×Q(aNd ‖ yN−1)P (yN ‖ xN ), (15)

such that E[Λ(AN
e , A

N
d )] ≤ Γ.

IV. ACHIEVABILITY

We present here only the encoding and decoding schemes
due to space constraints. The proof of existence of limit of
CN (Γ), the analysis of probability of error and the converse
result is deferred to [9].

A. Encoding Scheme

Encoding is based on generating separate code trees which
is described below. These are then revealed to the encoder and
the decoder.
• Encoder Code-Tree : 2NR code-trees are generated as

follows, the ith encoder action and channel input symbol
is generated using a probability mass function which
depends on previous encoder action and channel input
symbols and on the past sampled feedback sequence, i.e.
Q(xi, aie|xi−1, ai−1e , zi−1).

• Decoder Action Code-Tree : We generate a single
code tree at random, where the vertex represents de-
coder action symbol, ad,i generated with distribution
Q(ad,i|ai−1d , yi−1). Thus the present decoder action de-
pend on the past actions as well as the past channel
output.

Note that {Q(xi, aie|xi−1, ai−1e , zi−1)}Ni=1 and
{Q(ad,i|ai−1d , yi−1)}Ni=1 correspond to the joint distribution
on (XN , AN

e , A
N
d , S

N , Y N ) such that constraint
E
[
Λ(AN

e , A
N
d )
]
≤ Γ is satisfied.

Using the decoder action symbol ad,i, along with encoder
actions, ae,i and channel output yi, feedback sampler produces
sampled feedback as zi = f(ae,i, ad,i, yi). In this way, given
a message m, and the complete sampled feedback sequence
zN−1 thus obtained, there is a particular (xN , aNe ) which
can be found from the collection of encoder code trees. The
encoder thus sends the corresponding xN though the channel.

B. Decoding

The decoder performs ML decoding, i.e. it chooses the
message m for which P (yN |m) is maximized.

P (yN |m)

=

N∏
i=1

P (yi|yi−1,m)

(a)
=

N∏
i=1

P (yi|yi−1, aid(yi−1),m, xi(m, zi−1), aie(m.z
i−1))

(b)
=

N∏
i=1

P (yi|yi−1, aid(yi−1), xi(m, zi−1), aie(m.z
i−1))

= P (yN ‖ xN , aNe , aNd )
(c)
= P (yN ‖ xN ),

where (a) follows from the fact that knowing m and
yi−1, we know (xi, aie, a

i
d). This can be iteratively shown.

Given m we know (x1(m), a1(m)). We also know ad,1.
Given y1, z1 = f(ae,1, ad,1, y1). Hence now we know,
(x2(m, z1), ae,2(m, z1), ad,2(y1)). Iteratively we can conclude
that for a given message m and true feedback sequence,
yi−1, we can construct (xi, aie, a

i
d) knowing the codebooks.

(b) follows from the assumption on channel model in Eq. (6)
and (c) follows from our encoding scheme (refer to Lemma
1 in [9]). Hence ML decoding to construct message estimate,



m̂ can also be done my maximizing causal conditioning, i.e.,

m̂ = argmax
m

P (yN |m) = argmax
xN

P (yN ‖ xN ). (16)

m

z1
z2

z1 = a

z1 = b

z1 = c

z2 = a

z2 = b

z2 = c

z2 = a

z2 = b

z2 = c

z2 = a

z2 = b

z2 = c

m

z2 = ∗z1 = y1 z3 = y3

z2 = ∗

z2 = ∗
z3 = 1

z3 = 0

z3 = 1

z3 = 0

z1 = 0

z1 = 1

f(ae,1, ad,1, y1) f(ae,2, ad,2, y2)

(x1, ae,1) (x2, ae,2) (x3, ae,3)

f(·)

(ae,1, ad,1, y1)

x1

f(·) f(·)

(ae,2, ad,2, y2) (ae,3, ad,3, y3)

ae,1 = ad,1 ae,3 = ad,3ae,2 6= ad,2

(y2, ad,2)(y1, ad,1) x2 x3

Fig. 2. This figure illustrates Encoder Code-Trees in our coding scheme.
The left hand side figure depicts a general setting where Z = {a, b, c}, and
zi = f(ae,i, ad,i, yi). The tree is shown for N = 3. The right hand side
shows a specific example where ad,i = 0 ∀i and output is binary. Actions
of encoder, ae,i ∈ {0, 1} and zi = f(ae,i, ad,i, yi) = yi if ae,i = ad,i or
ae,i = 0, else it is erasure(= ∗). Hence some portion of the tree collapses as
by knowing ae,i we know the possible values of zi, for e.g. ae,i = 1 implies
zi = ∗ and ae,i = 0 implies, zi = 0 or 1.

C. Capacity for Stationary Indecomposable FSC without ISI

We assume now that state transition is a separate markov
chain and does not depend on input, i.e., P (yi, si|si−1, xi) =
P (si|si−1)P (yi|si, si−1, xi). Such a channel is said to have
no ISI. We further assume this channel is indecomposable as
the definition given below,

Definition 2: An FSC without ISI is said to be indecom-
posable if, for every ε > 0, ∃N0 such that ∀N > N0

|P (sN |s0)− P (sN |s′0)| ≤ ε ∀ sN , s0, s′0. (17)

The channel is stationary if P (s0) = π(s0).
Theorem 1: For a stationary and indecomposable FSC with-

out ISI and with communication abstraction as in Fig. 1, the
capacity of the channel is given by,

C(Γ) = lim
N→∞

CN (Γ) = lim
N→∞

1

N
max I(XN → Y N ), (18)

where max denotes maximization over Q(xN , aNe ‖
zN−1)Q(aNd ‖ yN−1) such that E[Λ(AN

e , A
N
d )] ≤ Γ.

Proof: The proof is similar to proof of Theorem 18 in [3]
with Q(xN ‖ zN−1) replaced by Q(xN , aNe ‖ zN−1)Q(aNd ‖
yN−1).

V. NUMERICAL EXAMPLE 1 : TO FEED OR NOT TO FEED
BACK

The actions now are binary, i.e., A = {0, 1}. In this setting,
action sequence determine to feed or not to feed back (by

either encoder or decoder) a deterministic function of the past
channel output, i.e.,

Zi = f(Ai, Yi) = g(Yi), if Ai = 1

Zi = f(Ai, Yi) = ∗, if Ai = 0, (19)

where ∗ stands for erasure or no information about feedback.
As a specific example for such a setting, consider the com-
munication system involving Markovian channel with encoder
feedback logic as in Fig. 3, which is essentially a no ISI,
stationary, indecomposable FSC. The cost function, Λ(a) = a,
a ∈ A and the cost constraint is Γ ∈ [0, 1].

Theorem 2: The capacity of the system in Fig. 3 with
encoder feedback logic is lower bounded as,

Cenc(Γ) ≥ Cenc,lower(Γ) = max I(X;Y |S), (20)

where maximization is over joint probability distribution,

PS,A,Z,X,Y (s, a, z, x, y) = πS(s)PA(a)1{z=f(a,s)}

×PX|Z,A(x|z, a)PY |X,S(y|x, s),

and E[Λ(A)] ≤ Γ. Now if instead of encoder we have decoder
taking actions, but causally dependent on the channel output
and the state (See Note 1), the capacity of such a system is
lower bounded as,

Cdec(Γ) ≥ Cdec,lower(Γ) = max I(X;Y |S), (21)

where maximization is over joint probability distribution,

PS,A,Z,X,Y (s, a, z, x, y) = πS(s)PA|S(a|s)1{z=f(a,s)}

×PX|Z,A(x|z, a)PY |X,S(y|x, s),

such that E[Λ(A)] ≤ Γ.
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δ

P (Yi|Xi, Si−1 = 0)

P (Yi|Xi, Si−1 = 1)

1

1

P (Yi|Xi, Si−1)
Yi

α

β

M̂ ∈ {1 : 2nR}

Xi(M,Zi−1)

Z i−1

Ai(M,Zi−1)
(Y i−1, Si−1)

Si

Fig. 3. To feed or not to feed back when encoder takes actions and decoder
knows the state. States are stationary and evolve as a markov process.

Proof: Omitted (refer to Theorem 12 and 13 in [9]).
Note 1: Note this is slightly different from the canonical

setting in Fig. 1, as the decoder takes action causally dependent
on the channel outputs and states. However as shown in
Section VII of [9] that the results for the setting in Fig. 1
can be applied to get fundamental limits for this setting.

We evaluate the lower bounds for the example in Fig. 3,
when α = β = ε = δ = 0.5. The region is shown in Fig. 4.
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Fig. 4. Cost-capacity trade off for example in Fig. 3. Cenc,lower is the lower
bound on capacity with encoder feedback logic. If instead of encoder decoder
decides (causally dependent on channel output and state) when encoder will
sample feedback, Cdec,lower is a lower bound on the capacity. The straight
line represents time sharing scheme which is strictly sub-optimal.

VI. NUMERICAL EXAMPLE 2 : CODING ON THE
BACKWARD LINK IN FSC

Consider the setting depicted in Fig. 5. We allow coding on
the backward link, i.e., decoder encodes the channel outputs
causally (Ai(Y

i, Si) ∈ A)[again refer to Note 1] and sends it
to the encoder. The encoder uses the acquired active feedback
symbols to generate channel input symbols, i.e., Xi(M,Ai−1).
For stationary indecomposable FSCs with active feedback we
denote the capacity by CAF .
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M̂ ∈ {1 : 2nR}

Xi(M,Ai−1)

M ∈ {1 : 2nR}

(Y i, Si)

Si

Ai(Y
i, Si)

Fig. 5. Modeling coding on the backward link for markovian channel with
binary states.

Theorem 3: For the system in Fig. 5, the capacity is lower
bounded as,

CAF (Γ) ≥ CAF,lower(Γ) = max I(X;Y |S), (22)

where maximization is over joint probability distribution,

PS,A,X,Y (s, a, x, y) = πS(s)PA|S(a|s)
×PX|A(x|a)PY |X,S(y|x, s),

where E[Λ(A)] ≤ Γ.
Proof: Omitted. (refer to Theorem 15 in [9])

As an example under this setting with Λ(a) = a, a ∈ {0, 1},
Fig. 5. models the scenario of cost constrained one-bit active
feedback in the given FSC. The plot for α = β = δ = 0.5 is
shown in Fig. 6.
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Fig. 6. Cost-capacity trade off for example in Fig. 5. CAF,lower is the lower
bound on capacity. The straight line represents naive time sharing scheme.

VII. CONCLUSION

In this paper, we studied systems with finite state channels
(FSCs), where the encoder and decoder adaptively decide what
to feed back from the decoder to encoder to optimize for
the rate of reliable communication, under an average cost
constraint. For no ISI, stationary indecomposable FSCs, we
have the exact characterization of the capacity. We also discuss
and compute capacities for the special cases of to feed or not
to feed back and of coding on the backward link for FSCs.
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